Abstract
The long-term durability of concrete hydraulic structures can be improved by controlling their rate of water absorption and linear shrinkage. Incorporation of fibers in concrete composites has the potential to improve these properties of concrete. Artificial fibers are commonly used in concrete due to its durable nature for long serviceable life. So, the overall aim of this research program is to study the effectiveness of artificial fibers for improvement of long-term durability of concrete hydraulic structures. To start with, polypropylene fibers are considered. The polypropylene fibers (PPF) have the unique properties of chemically inertness and low cost raw materials. The pilot study presents the experimental evaluation of water absorption and linear shrinkage of polypropylene fiber reinforced concrete (PPFRC) in comparison to that of plain concrete (PC). The mix design proportion of 1:3:1.5:0.7 (cement:sand:aggregates:water) is used in preparation of PC and PPFRC. For PPFRC, the fiber length of 50 mm and content of 5% by mass of cement are added. All tests are performed as per ASTM standard. Discussions on the considered properties of PC and PPFRC are made. As per expected outcomes PPFRC showed less water absorption and less linear shrinkage as compared to that of PC. Because of this possible attribute, the PPFRC can be used in hydraulic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.