Abstract
Methacrylate ester as well as allylether based polycarboxylates (PCEs) were synthesized to plasticize pastes of cement and silica fume having a water/cement ratio of 0.22. Methacrylate ester copolymers were found to disperse cement well, whereas allylether copolymers are more effective with silica fume. Mechanistic investigations revealed that in cement pore solution, the surface charge of silica fume becomes positive by adsorption of Ca 2+ onto negatively charged silanolate groups present on the silica surface. This way, polycarboxylate copolymers adsorb to and disperse silica fume grains. Thus, mixtures of both copolymers were tested in cement-silica fume pastes. These blends provide significantly better dispersion than using only one polymer. Apparently, the surfaces of hydrating cement (here mainly ettringite) and silica fume are quite different with respect to their chemical composition. Therefore, PCEs with different molecular architectures are required to provide maximum coordination with calcium atoms present on these surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.