Abstract

The objective of this study was to analyse the effectiveness of some parameters which characterise the change in morphology in human root canals subjected to ProTaper rotary enlargement with the help of an X-ray microfocus computed tomography (MCT) and to introduce a novel parameter that is effective in quantifying changes in root canal morphology. Ten each straight and curved root canals with mature apices chosen from extracted human upper incisor and canine teeth were scanned with MCT before and after canal shaping using ProTaper rotary instruments in order to facilitate three-dimensional digital reconstruction and quantitative gauging of relevant instrumental parameters and changes therein (surface area and volume). Root canal geometry change and the effectiveness of shaping were quantified with Structure Model Index change (ΔSMI) and surface area change to volume change ratio (ΔSA/ΔV). These two parameters were also tested on simulated canals. Postinstrumentation cross-sectional changes were also analysed, but only on the plastic blocks. Statistical analysis of parameters was carried out to verify the significance of results. Analysis of cross-sectional shape of postinstrumented resin simulated canals showed statistically significant decrease in Form Factor (p<0.05) and statistically significant increase in Eccentricity (p<0.005). ΔSMI did not show significant difference between straight and curved canals. SMI values showed bidirectional change during root enlargement which questions the reliability of this metric in analysing instrumentation. Statistically significant (p<0.005) deviations in ΔSA/ΔV were quantified as 1.92 and 3.22 for straight and curved human canals, respectively. Instrumentation-induced canal geometry change was determined to be more pronounced in curved canals using the novel parameter ΔSA/ΔV. This has been proven as being a statistically accurate and reproducible parameter for quantitative characterisation of root canal geometry change and differentiation of preparational efficacy for both straight and curved root canals.

Highlights

  • Root canal instrumentation is strongly affected by canal configuration [1] with studies showing morphology to be highly influential on the efficacy of canal preparation

  • For the evaluations the following parameters have been used to characterise the quality of instrumentation previously: surface area change (ΔSA), volume change (ΔV), Structure Model Index change (ΔSMI) and Centre of Mass change (CM shift)

  • The present study focused on the quantitative characterisation of the difference in canal morphology using available parameters

Read more

Summary

Introduction

Root canal instrumentation is strongly affected by canal configuration [1] with studies showing morphology to be highly influential on the efficacy of canal preparation. Frequency and magnitude of canal aberrations (e.g., zip, elbow, perforations, and asymmetric preparation) have been proven as being more prominent in curved root canals than straight ones [2]. X-ray microfocus computed tomography (MCT) has been extensively applied as a reliable methodology for the quantitative evaluation of root canal instrumentation [3, 4]. For the evaluations the following parameters have been used to characterise the quality of instrumentation previously: surface area change (ΔSA), volume change (ΔV), Structure Model Index change (ΔSMI) and Centre of Mass change (CM shift). The ΔSMI parameter reflects the crosssectional change in the root canal after instrumentation, especially for oval and round cross-sectional root canals. A simplified equation for the SMI for root canals has been proposed as SMI

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call