Abstract

This paper explains the free convective flowing of micropolar nanofluid through a solid sphere with Newtonian heating and the magnetic field influence. Sets of partial differential equations are converted by using convenient transformations to ordinary differential equations. The system of similar and nonsimilar equations is solved numerically using the Runge–Kutta–Fehlberg method (RKF45) using MAPLE software (version 20).The numerical results are validated by comparison with previously published works, and excellent agreement is found between them. The influence of the magnetic field parameter, solid volume fraction, and micropolar parameter on velocity, temperature, and angular velocity profiles are shown graphically. In addition, both the skin friction coefficient and Nusselt number are also discussed. It is found that the skin friction increases with an increase in the solid volume fraction of both nanoparticles and Newtonian heating and micropolar parameters. In addition, the magnetic field reduces both the skin friction and the Nusselt number. Moreover, the solid volume fraction and Newtonian heating parameter enhance the Nusselt number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.