Abstract
In this paper, we report a modeling of approximation for images by finding numerical rank in the wavelet domain through singular value decomposition of approximation coefficients. Firstly, the digital image is transformed into the frequency domain. Then high-frequency sub-bands are quantized to zero. This is quite obvious in wavelet-based image compression. Simultaneously, the low-frequency sub-bands are compressing by using truncated singular value decomposition (TSVD) through a numerical rank. Finally, reconstruct the approximation matrix via inverse discrete wavelet transform with low computational intricacy. This mathematical model is more adequate for solving engineering problems arises in digital image processing such as the transmission of image (reducing the bandwidth size of a communication channel) and storage capacity (space saving). The simulation results on gray and color images show that there is a gain in: (i) the compression ratio with acceptable visual quality as per human vision system; (ii) balancing of performance measures over conventional SVD methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.