Abstract

H2 is a low-impact energy carrier, which the EU hydrogen strategy has positioned as a major component of energy policy. Dark fermentation by psychrophilic bacteria is a promising avenue of H2 production, though one that requires further study. The aim of this study was to determine the H2 production performance of a Bacteroides vulgatus strain during fermentation of psychrophilic cattle slurry. The test strain was isolated from an inland water body at a depth of 40 ± 5 m. The experimental fermentation process was run at 15 ± 1 °C and yielded 265.5 ± 31.2 cm3 biogas/g COD removed, including 46.9 ± 2.6 cm3 H2/g COD removed. CO2 was the main constituent of the resultant biogas, at 79.8 ± 1.9%. The gas also contained 17.6 ± 1.4% H2 and 2.3 ± 0.2% CH4. Organic matter removal and nutrient take-up from the feedstock were low. Our findings show that practical applicability of this process is hampered by multiple operational hurdles and its relatively poor performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call