Abstract

Recently, drones have been regularly used to aid in search and rescue in places where it is normally to carry out some of the early forensic victim localization. There are many suitable human detectors for drone use, such as Histogram Oriented Gradient (HOG), You Only Looks Once (YOLO), and Aggregate Channel Features (ACF). In this paper, the height of the aerial images is analyzed for its effect on the accuracy of the detection. This works compares ACF, YOLO MobileNet, and YOLO ResNet50 using a different set of aerial images varying at 10m, 20m, and 30m heights. The results show that in a single-model test, with our proposed bounding-box standardization, YOLO MobileNet achieves significant increase in test precision (AP), with 0.7 AP recorded. For single-model test, YOLO MobileNet yield best AP using 20m training data where it obtained AP of 0.88 (10m test height), 0.82 (20m test height), and 0.91 (30m test height).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.