Abstract

BackgroundStrong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy. We aimed to determine the effects of moderate (MCT)- versus high-intensity interval training (HIT) on vascular function parameters in physically inactive adults. We hypothesized that individualized HIT prescription would improve the vascular function parameters more than the MCT in a greater proportion of individuals.MethodsTwenty-one inactive adults were randomly allocated to receive either MCT group (60–75% of their heart rate reserve, [HRR] or HIT group (4 min at 85–95% of peak HRR), 3 days a week for 12 weeks. Vascular function (brachial artery flow-mediated dilation, FMD [%], normalized brachial artery flow-mediated dilation, FMDn [%], aortic pulse wave velocity, PWV [m·s− 1], AIx, augmentation index: aortic and brachial [%]), were measured at baseline and over 12 weeks of training. In order for a participant to be considered a responder to improvements in vascular function parameters (FMDn and PWV), the typical error was calculated in a favorable direction.ResultsFMD changed by − 1.0% (SE 2.1, d = 0.388) in the MCT group, and + 1.8% (SE 1.8, d = 0.699) in the HIT group (no significant difference between groups: 2.9% [95% CI, − 3.0 to 8.8]. PWV changed by + 0.1 m·s− 1 (SE 0.2, d = 0.087) in the MCT group but decreased by − 0.4 m·s− 1 in the HIT group (SE 0.2, d = 0.497), with significant difference between groups: − 0.4 [95% CI, − 0.2 to − 0.7]. There was not a significant difference in the prevalence of no-responder for FMD (%) between the MCT and HIT groups (66% versus 36%, P = 0.157). Regarding PWV (m·s− 1), an analysis showed that the prevalence of no-responder was 77% (7 cases) in the MCT group and 45% (5 cases) in the HIT group (P = 0.114).ConclusionsUnder the conditions of the present study, both groups experienced changed in vascular function parameters. Compared to MCT group, HIT is more efficacious for improving FMD and decreasing PWV, in physically inactive adults.Trial registrationClinicalTrials.gov NCT02738385 registered on 23 March 2016.

Highlights

  • Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy

  • Ten participants were randomly allocated to the moderate continuous training (MCT) group, and 11 participants were randomly allocated to the high-intensity interval training (HIT) group

  • Peak brachial artery diameter significantly increased in the MCT group (+ 0.1 [standard error (SE) 0.1] mm) and HIT group (+ 0.3 [SE 0.1] mm), with a medium-to-large effect (d = 0.474 to 0.732), with significant difference between groups: 0.1 mm (CI 95% = 0.0 to 0.3; P < 0.01), indicating positive adaptations following HIT compared with those following MCT

Read more

Summary

Introduction

Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy. We aimed to determine the effects of moderate (MCT)- versus high-intensity interval training (HIT) on vascular function parameters in physically inactive adults. Of high -intensity activity) increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy [1, 2]. Training protocols involving traditional moderate continuous training (MCT) and high-intensity training (HIT) can improve endothelial function [4, 5] a response largely mediated by acute elevations in blood flow and laminar shear stress during individual exercise bouts [6, 7]. A growing body of evidence has demonstrated comparable or superior improvements in cardiovascular function using low-volume HIT compared to MCT [5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.