Abstract

In this report, we explore a segmentation-based approach for the calculation of surface plasmon resonance (SPR) on the curved surface with high curvature by modeling it as a contiguous array of finite segments. The approach would significantly facilitate the calculation with good accuracy because of the inherent nature that transfer matrix analysis can be used. Using the segmentation model, resonance characteristics at SPR were obtained as the curvature radius was varied. For validation of the segmentation, resonance wavelength (λSPR), reflectance at resonance (RSPR), and resonance width (δλSPR) were compared with the finite element method in the parallel and perpendicular light incidence. It was found that the results from the segmentation were in excellent agreement, λSPR in particular, while RSPR and δλSPR under parallel incidence showed disparity between the two models due to the short segmentation. Resonance of curved surface on the rigid and flexible substrate was compared and the overall trend was found to be almost identical. The segmentation is expected to provide a simple, fast, and efficient way for studying plasmonic devices with high curvature in flexible and wearable applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call