Abstract

A field demonstration project on flexible dam operation at the Managawa dam in the Kuzuryu River Basin has been implemented since 2000. The goal is to restore flow and sediment regimes in the Managawa River, which flows along the Ono-city and is located below the dam. Flexible dam operation stores inflow discharge into a reservoir, which generally uses part of the flood control capacity and appropriately discharges the stored water to the river, also known as the “flood pulse,” for restoring dynamic fluvial systems and the resulting ecological processes. In addition, other options have been carried out in combination with flexible dam operation, for example, sediment replenishment since 2003 and channel rehabilitation since 2007. This article reveals the positive impacts and effectiveness of flexible dam operation, sediment replenishment, and channel rehabilitation, and discusses challenges and future prospects toward translating the field demonstration project into dam management on the ground level. First, we classified reach types to identify the impact of various management options, e.g., flexible dam operation, sediment replenishment, and channel rehabilitation. These management options can influence respected reaches. We conducted a macro-scale analysis to understand the relationship between the aforementioned management options and dynamic fluvial systems, addressing changes in gravel riverbed, vegetation, and habitat types (riffles and pools). Second, a micro-scale analysis was conducted to understand the relationship between the management option and changes in attached algae to sediment and macro-invertebrates, etc. The results show the effectiveness of the middle-scale flood pulse to restore dynamic fluvial systems, increase habitat diversity, and sustain ecological processes. Furthermore, we discussed the impacts of such options on the flow and sediment regimes in Managawa River and revealed that flexible dam operation reduces the occurrence of low flow and midscale floods. It was also revealed methods such as sediment replenishment and channel rehabilitation play an important role in increasing the effectiveness of the middle-scale flood pulse and restoring dynamic fluvial systems, even though sediment replenishment is not sufficient to restore sediment regimes (i.e., bring then back to pre-dam conditions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.