Abstract

Centrifugal model tests are playing an increasingly important role in investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limited test space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating (FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curve for the slope without retaining structure shows a steep response that turns gradual for the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and anti-slide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.