Abstract

Developers of embedded (real-time) systems can choose from a variety of operating systems. While some embedded operating systems provide very flexible APIs, e.g., a POSIX-compliant interface for run-time management, others have a completely static structure, which is generated at compile time by utilizing detailed application knowledge. A prominent example for the latter class from the domain of automotive operating systems is OSEK/OS and its successor AUTOSAR/OS. As we have shown in previous work, the design of the operating system has a strong impact on its vulnerability for system failure caused by hardware faults. This observation is gaining importance, because there is an ongoing trend towards low-power and low-cost, yet less reliable, hardware. This work quantifies the difference in vulnerability for soft errors in main memory of a flexible (dynamic) operating systems (eCos) and a static system (CiAO), which has an OSEK-compliant structure. We also analyze the additional degree of robustness that is achieved by hardening an operating system with software-based and hardware-based fault-tolerance measures and the corresponding costs. Covering this design space gives developers a better chance for good design decisions with respect to the trade-off between fault tolerance, resource consumption, and interface convenience. Our results indicate that with a combination of hardware- and software-based fault-tolerance measures, silent data corruptions in both operating systems can be reduced to below one percent (compared to eCos). However, the analyzed fault-tolerance mechanisms are expensive for the dynamic system, whereas the statically designed operating system can be hardened at much lower price.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.