Abstract
With the popularization of the Internet lifestyle and the innovation of learning methods, more and more online learning systems have emerged, allowing users to study in the system anytime and anywhere. While providing convenience to users, online learning systems also bring troubles to users, who cannot quickly find the resources they are interested in from the huge amount of learning resources. In this paper, we apply deep learning to an English online learning platform and analyze learners and learning contents by clustering algorithm and association rules. Based on this, a content organization system is developed using genetic algorithms, which is applied to the case of this paper to provide learners with personalized learning content. With the hope that the system can be extended to other online learning platforms in the future, three data mining techniques were selected to solve the problems found in the English online learning platform, and we designed how these techniques should be applied to the online learning platform. The first technique is the cluster mining technique, which is used to analyze learners' profiles, classify learners in different categories, provide them with personalized learning content, and organize group learning. The second technique is association rules, which is used to analyze the correlation between learning contents. For the adaptive student-teacher knowledge migration strategy, the teacher model can guide the student model to track online and migrate the task-specific knowledge to the online tracking student model through the network parameters. Finally, a case study is selected and the above design is applied to this case study, and the results are analyzed in detail. The data mining technology is applied to the English online learning platform, and an innovative English learning content organization system is developed. It is hoped that the results of this study will have some practical value for promotion and provide an idea for the construction of the online learning platform, and it is also expected that the idea can improve the quality of online learning to a certain extent. Specifically, the online student model is adaptively updated by the teacher model parameters and the online student model parameters together.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.