Abstract

ObjectiveTo describe and compare diffusion tensor imaging (DTI) parameters between patients with subcortical ischemic vascular disease (SIVD) and Alzheimer’s disease (AD) diagnosed using structuralized neuropsychiatric assessments, and investigate potential neuronal substrates related to cognitive performance.MethodsThirty-five patients with SIVD, 40 patients with AD, and 33 cognitively normal control (NC) subjects matched by age and education level were consecutively recruited and underwent cognitive function assessments and DTI examinations. Comparisons among these three subgroups with regards to cognitive performance and DTI parameters including fractional anisotropy (FA) and mean diffusivity (MD) values were performed. Partial correlation analysis after controlling for age and education was used to evaluate associations between cognitive performance and DTI parameters.ResultsWith regards to cognitive performance, the patients with SIVD had lower total scores in frontal assessment battery (FAB) compared to those with AD (p < 0.05) in the context of comparable Mini-Mental Status Examination and Cognitive Abilities Screening Instrument scores. With regards to DTI parameters, there were more regions of significant differences in FA among these three subgroups compared with MD. Compared with NC group, the patients with SIVD had significant global reductions in FA (p < 0.001 ~ 0.05), while significant reductions in FA among the patients with AD were regionally confined within the left superior longitudinal fasciculus, genu and splenium of the corpus callosum, and bilateral forceps major, and the anterior thalamic radiation, uncinate fasciculus, and cingulum of the left side (p < 0.01 ~ 0.05). Analysis of FA values within the left forceps major, left anterior thalamic radiation, and genu of the corpus callosum revealed a 71.8% overall correct classification (p < 0.001) with sensitivity of 69.4%, specificity of 73.8%, positive predictive value of 69.4%, and negative predictive value of 73.8% in discriminating patients with SIVD from those with AD. In combined analysis of the patients with SIVD and AD (n = 75), the total FAB score was positively correlated with FA within the bilateral forceps minor, genu of the corpus callosum, left forceps major, left uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.001 ~ 0.038), and inversely correlated with MD within the right superior longitudinal fasciculus, genu and body of the corpus callosum, bilateral forceps minor, right uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.003 ~ 0.040)ConclusionsOur findings suggest the effectiveness of DTI measurements in distinguishing patients with early-stage AD from those with SIVD, with discernible changes in spatial distribution and magnitude of significance of the DTI parameters. Strategic FA assessments provided the most robust discriminative power to differentiate SIVD from AD, and FAB may serve as an additional cognitive marker. We also identified the neuronal substrates responsible for FAB performance.

Highlights

  • Dementia is a syndrome in which there is deterioration in memory, thinking, behavior and the ability to perform everyday activities [1]

  • Diffusion tensor imaging in differentiating dementia subtypes longitudinal fasciculus, genu and splenium of the corpus callosum, and bilateral forceps major, and the anterior thalamic radiation, uncinate fasciculus, and cingulum of the left side (p < 0.01 ~ 0.05)

  • In combined analysis of the patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer’s disease (AD) (n = 75), the total frontal assessment battery (FAB) score was positively correlated with fractional anisotropy (FA) within the bilateral forceps minor, genu of the corpus callosum, left forceps major, left uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.001 ~ 0.038), and inversely correlated with mean diffusivity (MD) within the right superior longitudinal fasciculus, genu and body of the corpus callosum, bilateral forceps minor, right uncinate fasciculus, and right inferior longitudinal fasciculus (p = 0.003 ~ 0.040)

Read more

Summary

Introduction

Dementia is a syndrome in which there is deterioration in memory, thinking, behavior and the ability to perform everyday activities [1]. Alzheimer’s disease (AD) and vascular cognitive impairment (VCI) constitute the majority of patients with dementia [2], diagnosing and differentiating the subtypes of dementia, during the early stage, remains a challenge. Some researchers have concluded that patients with AD and VCI have their own specific characteristic cognitive profiles [6,7,8], others have reported a poor diagnostic accuracy in differentiating dementia subtypes [9,10] This inconsistency may partly be because VCI encompasses a group of heterogeneous pathological properties (e.g., ischemia, micro/macro-hemorrhage) and involves different regions (e.g., cortex, subcortical regions, and strategic infarcts) with variable severity (e.g., local, multifocal, and diffuse lesions) [11].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call