Abstract

In this study, A. angustifolia cellulose was tested as a potential fibre for use in biocomposites based on a polylactic acid (PLA)/natural rubber (NR) blend compatibilised with liquid natural rubber. Biocomposite analyses were performed via mechanical, physical, morphological, thermal, and biodegradation characterisations to evaluate the influence of the cellulose content on the properties of biocomposites. The addition of Agave cellulose improved the tensile properties of the biocomposites with biocomposites reinforced by 7.5 wt% cellulose showing maximum tensile strength. Differential scanning calorimetry analysis showed that Agave cellulose acts as a nucleating agent for PLA, and the thermal stability improved up to 6% upon cellulose addition. Soil burial tests revealed that the biodegradability, which is directly influenced by the water absorption of the biocomposites, increased with increasing cellulose addition. Finally, water absorption tests indicated that biocomposites with low water resistance increase the degradation rates of the PLA–NR blends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.