Abstract

Agricultural diffuse pollution is a major environmental problem causing eutrophication of water bodies. Despite the problem is widely acknowledged, there has been relatively few major advances in mitigating the problem. We studied the effectiveness of biopolymer-based (tannin, starch, chitosan) natural coagulants/flocculants in treatment of two different agricultural wastewaters that differed in their level of phosphorus pollution and turbidity. We used jar-tests to test the effectiveness of the biopolymer coagulants in reducing water turbidity, total phosphorus, and total organic carbon (TOC) from the wastewaters. In more polluted water (total phosphorus: 300 µg/L, turbidity: 130 FNU, TOC: 30 mg/L), all tested biopolymers performed well. The best reductions for different biopolymer coagulants were 64–95%, 80–98% and 14–27%, for total phosphorus, turbidity and TOC, respectively. Tannin and chitosan coagulants performed the best at doses of 5–10 mL/L, whereas starch coagulants had the best performance at 1–2 mL/L doses. Tannin and chitosan coagulants performed clearly better than the starch coagulants. In less polluted water (total phosphorus: 74 µg/L, turbidity: 3.9 FNU, TOC: 21 mg/L), chitosan and starch coagulants did not produce flocs at any of the tested doses. Tannin coagulant performed the best at doses of 5–8 mL/L, where reductions were 70%, 82%, and 22%, for total phosphorus, turbidity and TOC, respectively. The great reductions of phosphorus and turbidity suggests that biopolymer coagulants could be applied in treatment of agricultural water pollution. The high phosphorus retention in the biodegradable biopolymer sludge suggests that the sludge can be readily used as a phosphorus fertilizer, which would aid the recycling of nutrients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.