Abstract
Supported nano zero-valent iron is receiving great attention nowadays due to its effectiveness in treating heavy metal pollutants. Therefore, this study aimed to investigate the effectiveness of granitic residual soil-supported nano zero-valent iron (Gr-nZVI) for the removal of the heavy metals Pb2+, Cu2+, Co2+, Cd2+ Ni2+ and Zn2+ in mixture solutions under different experimental conditions of batch equilibrium tests. In this study, Gr-nZVI was successfully synthesized by using the chemical reduction of Ferric Chloride Hexahydrate (FeCl3.6H2O) and Sodium Borohydride (NaBH4). The physical and chemical properties, morphology and mineralogy of all adsorbents were characterized by the Braeuer–Emmett–Teller (BET) method, cation exchange capacity (CEC), X-ray fluorescence (XRF), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Isotherm, kinetic and diffusion model analyses were conducted to fit the experimental data. The results show rapid adsorption within 5 min in the initial adsorption stage for Pb2+ on nZVI (qe.Pb = 17.89 mg/g) and Gr-nZVI (qe.Pb = 15.29 mg/g). nZVI and Gr-nZVI also showed no significant effects on pH and temperature, serving as a good example of an energy-efficient process. The isotherm data fitted better to the Langmuir model and the pseudo-second-order kinetic model for the adsorption of all of the heavy metals. The diffusion models revealed that adsorption was not the only rate-limiting step. In this study, nZVI compared to Gr-nZVI and Gr demonstrated superior adsorption capacity for the heavy metal adsorption selectivity. Hence, these materials can be utilized as alternative energy-efficient adsorbents for the adsorption of metal ions from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.