Abstract

Pseudomonas aeruginosa is a leading human pathogen that causes serious infections at various tissues and organs leading to life threatening health problems and possible deadly outcomes. Resistance patterns vary widely whether it is from hospitals or community acquired infections. Reporting resistance profiles to a certain antibiotics provide valuable information in a given setting, but may be extrapolated outside the sampling location. In the present study, P. aeruginosa isolates were screened to determine their susceptibilities against anti-pseudomonal antimicrobial agents and possible existing mechanisms of resistance were determined. Eighty-six isolates of P. aeruginosa were recovered. Isolates representing different resistance profiles were screened for the existence of three different resistance mechanisms including drug inactivation due to metallo-β-lactamases, drug impermeability by outer membrane proteins and drug efflux. All tested isolates showed uniform susceptibility (100%, n = 86/86) to piperacillin, meropenem, amikacin, and polymyxin B. A single isolate was found to be imipenem resistant (99%, n = 85/86). The possible mechanisms of resistance of P. aeruginosa to imipenem involve active drug efflux pumps, outer membrane impermeability as well as drug inactivating enzymes. These findings demonstrate the fundamental importance of the in vitro susceptibility testing of antibiotics prior to antipseudomonal therapy and highlight the need for a continuous antimicrobial resistance surveillance programs to monitor the changing resistance patterns so that clinicians and health care officials are updated as to the most effective therapeutic agents to combat the serious outcomes of P. aeruginosa infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call