Abstract

Ballistic performances are determined by both the maximal lower limb power output (Pmax) and their individual force-velocity (F-v) mechanical profile, especially the F-v imbalance (FVimb): difference between the athlete's actual and optimal profile. An optimized training should aim to increase Pmax and/or reduce FVimb. The aim of this study was to test whether an individualized training program based on the individual F-v profile would decrease subjects' individual FVimb and in turn improve vertical jump performance. FVimb was used as the reference to assign participants to different training intervention groups. Eighty four subjects were assigned to three groups: an “optimized” group divided into velocity-deficit, force-deficit, and well-balanced sub-groups based on subjects' FVimb, a “non-optimized” group for which the training program was not specifically based on FVimb and a control group. All subjects underwent a 9-week specific resistance training program. The programs were designed to reduce FVimb for the optimized groups (with specific programs for sub-groups based on individual FVimb values), while the non-optimized group followed a classical program exactly similar for all subjects. All subjects in the three optimized training sub-groups (velocity-deficit, force-deficit, and well-balanced) increased their jumping performance (12.7 ± 5.7% ES = 0.93 ± 0.09, 14.2 ± 7.3% ES = 1.00 ± 0.17, and 7.2 ± 4.5% ES = 0.70 ± 0.36, respectively) with jump height improvement for all subjects, whereas the results were much more variable and unclear in the non-optimized group. This greater change in jump height was associated with a markedly reduced FVimb for both force-deficit (57.9 ± 34.7% decrease in FVimb) and velocity-deficit (20.1 ± 4.3%) subjects, and unclear or small changes in Pmax (−0.40 ± 8.4% and +10.5 ± 5.2%, respectively). An individualized training program specifically based on FVimb (gap between the actual and optimal F-v profiles of each individual) was more efficient at improving jumping performance (i.e., unloaded squat jump height) than a traditional resistance training common to all subjects regardless of their FVimb. Although improving both FVimb and Pmax has to be considered to improve ballistic performance, the present results showed that reducing FVimb without even increasing Pmax lead to clearly beneficial jump performance changes. Thus, FVimb could be considered as a potentially useful variable for prescribing optimal resistance training to improve ballistic performance.

Highlights

  • Advancements in strength and conditioning methodologies alongside evolution in physical demands of competition in sports such as rugby, football, volleyball, basketball, or athletics, have led to an increased relevance of high-intensity, ballistic actions

  • In the recent years, a new paradigm supports the fact that ballistic performance such as jumping height is largely determined by maximal power output (Pmax) that lower limbs can generate (Yamauchi and Ishii, 2007), it is influenced by the individual combination of the underlying force and velocity mechanical outputs, known as force-velocity (F-v) profile (Samozino et al, 2012, 2014; Morin and Samozino, 2016)

  • FD and VD sub-groups showed large and extremely large changes in F-v imbalance (FVimb), respectively, whereas this change was unclear for the WB group, who showed a small increase in Pmax (Table 3)

Read more

Summary

Introduction

Advancements in strength and conditioning methodologies alongside evolution in physical demands of competition in sports such as rugby, football, volleyball, basketball, or athletics, have led to an increased relevance of high-intensity, ballistic actions. Physical performance in these kinds of sports is clearly determined by high levels of force, power, and velocity during ballistic movements such as sprints, changes of direction, or jumps (Cronin and Sleivert, 2005; Cormie et al, 2010). The inclusion of F-v relationship and their contribution to ballistic performance may provide a more accurate and integrative mechanical representation of the athlete’s maximal capabilities (Samozino et al, 2012), since they encompass the entire forcevelocity spectrum, from the theoretical maximal force (F0) to the theoretical velocity (v0) capabilities (Morin and Samozino, 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call