Abstract

Previous studies have shown that the application of soil amendments is efficient in reducing acidity and heavy metal bioavailability in mine soils. However, it remains a challenge for environmentalists to predict accurately and control economically the re-acidification in re-vegetated mine soils. In this study, net acid generation (NAG) test and bioassay technique were employed to assess the effectiveness of the amendments [including lime, N-P-K (nitrogen, phosphorous and potassium) fertilizer, phosphate and river sediment] on re-acidification and heavy metal immobilization in an extremely acid (pH < 3) mine soil. Our results suggested that NAG test was a rapid and accurate approach to assess the effectiveness of the amendments on re-acidification potential of the mine soil. Interestingly, it was found that phosphate and river sediment played quite specific roles in preventing the re-acidification in the mine soil. In addition, the results also indicated that the addition of 25 t ha(-1) lime combined with river sediment (30%) might be an economical method to successfully control the acidification and re-acidification in the extremely acid mine soil, allowing the re-establishment of the plants. Collectively, our results implied that the combined use of NAG test and bioassay assessment was effective in evaluating a reclamation strategy for extremely acidic mine soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.