Abstract

Various wastes can be utilized to produce activated carbon, one of the wastes that can be utilized is nutmeg shell (Myristica fragrans). Activated carbon from nutmeg shells (Myristica fragrans) was used in this study to reduce the content of Pb(II) and Cu(II) ions in liquid waste. This research utilized the adsorption method with the batch system to determine the optimum contact time, optimum pH, and adsorption capacity. The characterization of activated carbon was done by Scanning Electron Microscopy (SEM) and Surface Area Analyzers (SAA). The content of Pb(II) and Cu(II) ions in the filtrate after adsorption was analyzed using an atomic absorption spectrophotometer (AAS). The results of SEM analysis showed that the carbon surface was cleaner and had more open pores after the activation process than before activation. The carbon surface area is 19.6243 m2.g-1. From the results of AAS analysis, the optimum time and pH for Pb(II) and Cu(II) ions was 40 min at pH 5 and 70 min at pH 4. With the Freundlich isotherm method, the adsorption capacity of the adsorbent for Pb(II) ions was 9.6028 mg.g-1 and Cu(II) ions was 0.035 mg.g-1, and the adsorption effectiveness on liquid waste for Pb and Cu metals was 1.9454 mg.g-1 and 0.4251 mg.g-1, respectively. The results showed that activated carbon from the nutmeg shell (Myristica fragrans) was able to reduce the levels of Pb(II) and Cu(II) ions in liquid waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call