Abstract
Abstract A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting the effects of thermal radiation, are solved symbolically to close approximation. Provision is made for the offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in the entrance regions. The peak effectiveness and the number of transfer units at which it occurs are linear functions of the maximum angle of the Archimedean spiral that describes the ducts; entrance region effects reduce both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.