Abstract

Because of their antagonistic activity towards pathogenic and spoilage bacteria, some members of the lactic acid bacteria (LAB) have been evaluated for use as food biopreservatives. The objectives of this study were to assess the antimicrobial utility of a commercial LAB intervention against O157 and non-O157 Shiga-toxigenic E. coli (STEC) on intact beef strip loins during refrigerated vacuum aging and determine intervention efficacy as a function of mode of intervention application. Prerigor strip loins were inoculated with a cocktail (8.9 ± 0.1 log10 CFU/ml) of rifampicin-resistant (100.0 μg/ml; RifR) O157 and non-O157 STEC. Inoculated loins were chilled to ≤4°C and treated with 8.7 ± 0.1 log10 CFU/ml LAB intervention using either a pressurized tank air sprayer (conventional application) or air-assisted electrostatic sprayer (ESS). Surviving STEC were enumerated on tryptic soy agar supplemented with 100.0 μg/ml rifampicin (TSAR) to determine STEC inhibition as a function of intervention application method (conventional, ESS) and refrigerated aging period (14, 28 days). Intervention application reduced STEC by 0.4 log10 CFU/cm2 (p < 0.05), although application method did not impact STEC reductions (p > 0.05). Data indicate that the LAB biopreservative may assist beef safety protection when utilized within a multi-intervention beef harvest, fabrication, and aging process.

Highlights

  • An estimated 175,905 Shiga-toxigenic Escherichia coli (STEC) foodborne disease cases occur in the United States each year, with non-O157 STEC being reportedly the causative agents in 64.1% of cases [1]

  • STEC inoculum fluid contained 8.9 ± 0.1 log10 CFU/ml prior to application to beef surfaces; STEC populations on inoculated strip loins remained unchanged during chilled transportation to the food microbiology laboratory prior to treatment (Table 2)

  • Control strip loins (STEC-inoculated, untreated) were handled identically to those subjected to lactic acid bacteria (LAB) intervention treatment, STEC numbers enumerated from nontreated controls after chilling (6.6 ± 0.1 log10 CFU/cm2) were statistically lower than those from intervention-treated samples (7.2 ± 0.1 log10 CFU/cm2) (p < 0.05) (Table 2)

Read more

Summary

Introduction

An estimated 175,905 Shiga-toxigenic Escherichia coli (STEC) foodborne disease cases occur in the United States each year, with non-O157 STEC being reportedly the causative agents in 64.1% of cases [1]. The lactic acid bacteria (LAB), as a type of biopreservative, are reported to be useful for preventing the growth of pathogenic microbes on meat products [12, 13] and are in some instances classified as generally recognized as safe (GRAS) for use in nonintact, whole muscle cuts or carcasses, and ready-to-eat meats [14, 15]. These organisms antagonize other bacteria, including human pathogens, through competition for nutrients and/or attachment sites, production of antimicrobial metabolites (e.g., reuterin, diacetyl, and fatty acids), bacteriocins (e.g., nisin, pediocin), and weak organic acids (e.g., lactic, acetic acid) [16, 17]. Previous studies have explored the inhibitory mechanisms of specific protective

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call