Abstract

PurposeNanofluids are widely used in heat transfer phenomena owing to the higher rate of heat removal as compared to their base fluids. Nanoparticle’s motion in nanofluids is analysed by slip mechanisms that consider physical properties, which can be found in literature. It is assumed that among few, only Brownian motion and thermophoresis affect the slip mechanism to produce a relative velocity between the nanoparticles and the base fluid. The purpose of this paper is to study the effects of Brownian motion and thermophoresis in a square cavity by considering it pure fluid as well as porous cavity.Design/methodology/approachA finite element method is used to solve the flow porous equations together with the heat transfer equation and the mass transfer equation numerically. The heat and mass transfer equations were modified to take into consideration the Brownian motion as well as the thermophoresis effect.FindingsA negligible amount of Brownian motion and thermophoresis effect has been found by considering 1 to 3 Vol.% of aluminium oxide as nanoparticles suspended in base fluid of water.Practical implicationsThis study has provided an interesting insight into the importance of Brownian motion as well as the thermophoresis effect in heat enhancement.Originality/valueThe present study is believed to be an interesting and original contribution on nanofluid thermal behaviours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.