Abstract

BackgroundPegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline. This study aimed to evaluate the real-world effectiveness and safety of PLD versus epirubicin as neoadjuvant or adjuvant treatment for breast cancer.MethodsClinical data of invasive breast cancer patients who received neoadjuvant or adjuvant chemotherapy with PLD or epirubicin were retrospectively collected. Propensity score matching (PSM) was performed to reduce the risk of selection bias. The molecular typing of these patients included Luminal A, Luminal B, HER2-positive, and basal-like/triple-negative. The primary outcome was pathological complete response (pCR) rate for neoadjuvant chemotherapy and 3-year disease-free survival (DFS) rate for adjuvant chemotherapy. Noninferiority was suggested if the lower limit of the 95% CI for the 3-year DFS rate difference was greater than − 10%. The secondary outcome was adverse reactions.ResultsA total of 1213 patients were included (neoadjuvant, n = 274; adjuvant, n = 939). pCR (ypT0/Tis ypN0) rates of patients who received neoadjuvant chemotherapy were 11.6% for the PLD group and 7.0% for the epirubicin group, but the difference was not statistically significant (P = 0.4578). The 3-year DFS rate of patients who received adjuvant chemotherapy was 94.9% [95%CI, 91.1–98.6%] for the PLD group and 95.4% [95%CI, 93.0–97.9%] for the epirubicin group (P = 0.5684). Rate difference between the two groups and its 95% CI was - 0.55 [− 5.02, 3.92]. The lower limit of the 95% CI was − 5.0% > − 10.0%, suggesting that PLD is not be inferior to epirubicin in adjuvant chemotherapy for breast cancer. The incidences of myelosuppression, decreased appetite, alopecia, gastrointestinal reactions, and cardiotoxicity were lower in the PLD group than in the epirubicin group, while the incidence of nausea was higher in the PLD group.ConclusionsIn the neoadjuvant and adjuvant treatment of breast cancer, effectiveness is similar but toxicities are different between the PLD-containing regimen and epirubicin-containing regimen. Therefore, further study is warranted to explore PLD-based neoadjuvant and adjuvant chemotherapy for breast cancer.

Highlights

  • Pegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline

  • The patients were divided into the neoadjuvant chemotherapy group and adjuvant chemotherapy group according to their treatment stage and into the PLD group and epirubicin group according to the drug regimen

  • A total of 1213 patients met the selection criteria, including 274 neoadjuvant chemotherapy patients and 939 adjuvant chemotherapy patients

Read more

Summary

Introduction

Pegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline. This study aimed to evaluate the real-world effectiveness and safety of PLD versus epirubicin as neoadjuvant or adjuvant treatment for breast cancer. Preoperative neoadjuvant chemotherapy and postoperative adjuvant chemotherapy can effectively reduce the risk of recurrence and improve the cure rate of early and locally advanced breast cancer patients [2, 3]. Anthracycline-based chemotherapy is a common neoadjuvant and adjuvant therapy for breast cancer patients. Anthracycline-induced cardiotoxicity was reported to be closely associated with the cumulative dose of the drug [5], and can occur at a low dose, and can be acute, chronic, and delayed, most of which occur in the first year of treatment [6]. The risk factors for anthracycline-induced cardiotoxicity include being < 5 or > 65 years of age, past or current chest irradiation, history of heart diseases, or the presence of cardiovascular risk factors [7]. Anthracycline-related cardiotoxicities are often progressive and irreversible, leading to ventricular dysfunction, heart failure, and arrhythmia [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call