Abstract

Polymers as a soil amendment is one of the effective measurements to reduce soil erosion. In this study, two polymers, polyacrylamide (PAM) and polysaccharide (Jag C 162), were applied to erosion plots filled with loess soil (tilted at 20°). For each polymer, four concentration levels—0, 10, 30, and 50 kg·ha−1—were applied. The treated erosion plots were then subjected to two simulated rainfall events (dry and wet run) to investigate their effectiveness and durability in controlling soil erosion. Both simulated rainfall events were at an intensity of 120 mm·h−1, and each event lasted for 30 min with 24 h free drainage in between. Results show that both polymers could reduce runoff, effectively control sheet erosion, and promote soil aggregates due to their capability to bind and stabilize soil particles. Such reducing effects were more pronounced on the Jag C 162-treated plots than on the PAM-treated plots. However, during the second (wet) run, there was more reduction of aggregate with size of >0.25 mm and greater increment of soil loss on the Jag C 162-treated plots than on the PAM-treated plots.

Highlights

  • Soil erosion has severely threatened the sustainability and productive capacity of agriculture, and has caused economic loss [1,2]

  • The reduction of the sum of runoff depths from the PAM-treated plots was less than 11% during both runs, whereas runoff depth reduction from the Jag C 162-treated plots was lower during the wet run (10% less) than during the dry run (15–25%) (Table 1)

  • Two polymer amendments were sprayed over a loess soil and subjected to simulated rainfall events to investigate their effectiveness and durability in terms of sheet erosion control

Read more

Summary

Introduction

Soil erosion has severely threatened the sustainability and productive capacity of agriculture, and has caused economic loss [1,2]. Short but heavy storms during summer, accounting for approximately half of annual precipitation, are one of the major threats to cause soil erosion [5,6]. A heavy storm (approximately 250 mm within one day) occurred in July in Suide County, northwest Loess Plateau, causing tremendous destruction and economic losses. There is a need to find a measure to prevent soil erosion while maintaining agriculture sustainability.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.