Abstract
The effectiveness and associated mechanisms of the biofilm attached cultivation (BAC) under mixotrophy in promoting algal proliferation were investigated. Commercially valuable unicellular microalgae Chromochloris zofingiensis was first used in BAC. Compared with suspended cultivation, the results unequivocally demonstrated the growth benefits of C. zofingiensis cells under BAC with high biomass productivity of 8.53 g m−2 d−1. The physiological and transcriptomic data revealed that the augmented biomass yield was attributable to larger cell size, higher accumulation of chemical substances, significantly upregulated carbon fixation pathway, and greater energy supply efficiency. Here, BAC acts as a “cage” was proposed. Specifically, cells allocate less energy toward mobility, directing a higher share toward growth and production due to their immobilized lifestyle. These findings provide novel insights for optimizing cultivation strategies for commercially valuable algal species and offer a novel perspective from microalgae physiological on understanding higher biomass yield in BAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.