Abstract

There has been significant interest in the preparation and versatile applications of carbon dots (CDs) due to their immense potential value in sensors and imaging. In this work, silicon-doped green carbon dots (Si-CDs) with high quantum yield and rich epoxypropyl were effectively synthesized. Given the clinical diagnostic importance of abnormal levels of tyrosinase (TYR), sensitive detection of TYR is significant for clinical research. A fluorescence signal-off strategy with Si-CDs as probe was constructed to determine TYR based on the oxidation of dopamine by TYR. The detection ranges of this method were 0.01–1.5 and 10–30 U/mL with the detection limit of 0.0046 U/mL, the lower limit of quantification (LLOQ) was 0.01 U/mL, and TYR was successfully and accurately monitored in human serum. Additionally, due to the role of lysosomes in cellular regulatory processes, including TYR levels and fluorescence stability characteristics of Si-CDs in acidic conditions, it was envisaged to use Si-CDs as probe to establish real-time monitoring of lysosomes. According to fluorescence colocation analysis, Si-CDs had intrinsic lysosomal targeting ability to HepG2 and L-02 (with Pearson correlation coefficients were 0.90 and 0.91, respectively). The targeting of Si-CDs to lysosomes was due to the acidophilic effect of the epoxypropyl on its surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.