Abstract

The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn(III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call