Abstract

This work explores a simple way to regulate the morphology and structure of biomass-based carbon and effectively utilize its internal functional groups as the substrate for the next energy materials. The unique randomly oriented and highly interconnected cordyceps-like 3D structure of rice husk is formed by direct high-temperature carbonization, and the main component is SiC. The well-arranged cordyceps-like structure of SiC demonstrates a remarkable structural/chemical stability and a high rate of electron migration, and further could be used as a stable substrate for metal deposition and find application in the field of electrocatalysis. The oxygen evolution reaction catalyst (SiC-C@Fe3O4) prepared by chemical deposition exhibits a low overpotential (260 mV), low Tafel slope (56.93 mV dec-1), high electrochemical active surface area (54.92 mF cm-2), and low Rct value (0.15 Ω) at a current density of 10 mA cm-2 in 1 M KOH electrolyte. The produced natural Si-C composite materials overcome the limitations imposed by the intricate internal structure of silicon-rich biomass. The existence of this stable substrate offers a novel avenue for maximizing the utilization of rice-husk-based carbon, and broadens its application field. At the same time, it also provides a theoretical basis for the use of rice husks in the field of hydrogen production by electrolysis of water, thus promoting their high-value utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.