Abstract
Effective-index approach is applied for modeling of channel plasmon polaritons (CPPs) propagating in rectangular grooves (trenches) and triangular (V-shaped) grooves in gold, accounting for the main features of CPP guiding and elucidating its underlying physics. The effective indexes of CPP modes along with the corresponding propagation lengths are calculated for different configurations and wavelengths while varying the groove depth. The results obtained allow one to identify the parameter range for realizing the single-mode CPP guiding featuring subwavelength confinement and moderate propagation loss at telecom wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.