Abstract

We present a truncation scheme of the effective-average-action approach of the nonperturbative renormalization group that allows for an accurate description of the critical regime as well as of correlation functions at finite momenta. The truncation is a natural modification of the standard derivative expansion that includes both all local correlations and two-point and four-point irreducible correlations to all orders in the derivatives. We discuss schemes for both the symmetric and the symmetry broken phase of the O(N) model and present results for D=3. All approximations are done directly in the effective average action rather than in the flow equations of irreducible vertices. The approach is numerically relatively easy to implement and yields good results for all N both for the critical exponents and for the momentum dependence of the two-point function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.