Abstract

This paper proposes two new algorithms, namely (i) SSReL1Min(CVX)-Scalar-Sign function-based Reweighted L1−norm Minimization algorithm combined with Disciplined Convex Programming for a high-performance L0−norm Minimization algorithm and (ii) SSReL1Min(MBB) – SSReL1Min algorithm combined with modified Barzilai-Borwein algorithm for a computational fast L0−norm Minimization algorithm (without significantly sacrificing the performance). Based on the proposed L0−norm minimization algorithm, this paper also presents an upgraded compressed sensing to improve its performance on the recovery of noisy signals. The proposed L0−norm minimization algorithm includes a new optimal scalar-sign function-based weighting (in the least squares sense), as well as a new and systematic mapping mechanism in pre- and post-processing, for noisy compressed sensing. This improvement is further confirmed by experimental results. Comparisons with different state-of-the-art solvers are also included, to show that the proposed method outperforms existing ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.