Abstract

We developed a methodology for the evaluation of the effective Young's modulus (EYM) of the vertically aligned carbon nanofibers array (CNFA). The carbon nanofibers array is treated in this study as a continuous structural element, and, for this reason, the determined EYM might be appreciably different (actually, lower) than the Young's modulus (YM) of the material of an individual carbon nanotube or a nanofiber. The developed methodology is based on the application of a compressive load onto the carbon nanofibers array, so that each individual carbon nanofiber experiences axial compression and is expected to buckle under the compressive load. The relationship between the applied compressive stress and the induced displacement of the carbon nanofiber array is measured using a table version of an Instron tester. It has been found that the carbon nanofiber array exhibits nonlinear behavior and the EYM increases with an increase in the compressive load. The largest measured EYM of the carbon nanofiber array turned out to be about 90 GPa. It has been found also that the fragmentary pieces of lateral graphitic layer in the carbon nanofiber array resulted in substantial worsening of the quality of the carbon nanofibers. This might be one of the possible reasons why the measured EYM turned out to be much lower than the theoretical predictions reported in the literature. The measured EYM is also much lower than the reported in the literature atomic force microscopy (AFM)-based data for the EYM for multiwalled carbon nanotubes (MWCNTs) that possess uniform and straight graphitic wall structure. Our transmission electron microscope (TEM) observations have revealed indeed poor structural qualities of the plasma-enhanced chemical vapor deposition (PECVD) grown CNFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.