Abstract

The classical solution to the bearing capacity problem predicts the limit load on symmetrically loaded shallow strip footings. A useful hypothesis was suggested by Meyerhof to account for eccentricity of loading, in which the footing width is reduced by twice-the-eccentricity to its ‘effective’ size. This hypothesis sometimes has been criticized as being overconservative. This paper examines Meyerhof’s suggestion and presents the bearing capacity of eccentrically loaded footings calculated using the kinematic approach of limit analysis. It is found that the effective width rule yields a bearing capacity equivalent to that calculated based on the assumption that the footing is smooth. For more realistic footing models and for cohesive soils the effective width rule is a reasonable account of eccentricity in bearing capacity calculations. Only for significant bonding at the soil-footing interface and for large eccentricities does the effective width rule become overly conservative. For cohesionless soils, however, the effective width rule may overestimate the best upper bound. This overestimation increases with an increase in eccentricity. ©

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call