Abstract

We report on the optical performance of metallic nanohelices as the extension of the helical antenna concept into the optical wavelength range. These helical nanoparticles exhibit a structure and material dependent optical response due to the existence of a longitudinal localized-plasmon resonance which scales linearly with the total length of the helix; thus, comprising the number of turns and the single-turn length of the nanohelix. This is in contrast with macroscopic metallic helices, where the scaling of their operational mode is only determined by the length of a single turn. We show how the plasmon damping is radiated or absorbed depending on the interband activity of the metal forming the nanohelix. This study demonstrates the ability of helical structures to control and manipulate optical fields at the nanometer scale according to their specific shape and material composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.