Abstract

Starting from the 3D Gross-Pitaevskii equation and using a variational approach, we derive an effective 1D wave-equation that describes the axial dynamics of a Bose condensate confined in an external potential with cylindrical symmetry. The trapping potential is harmonic in the transverse direction and generic in the axial one. Our equation, that is a time-dependent non-polynomial nonlinear Schr\"odinger equation (1D NPSE), can be used to model cigar-shaped condensates, whose dynamics is essentially 1D. We show that 1D NPSE gives much more accurate results than all other effective equations recently proposed. By using 1D NPSE we find analytical solutions for bright and dark solitons, which generalize the ones known in the literature. We deduce also an effective 2D non-polynomial Schr\"odinger equation (2D NPSE) that models disc-shaped Bose condensates confined in an external trap that is harmonic along the axial direction and generic in the transverse direction. In the limiting cases of weak and strong interaction, our approach gives rise to Schr\"odinger-like equations with different polynomial nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call