Abstract

Wall slip is an important phenomenon for the flow of granular materials in chutes and channels. The appearance of a slip velocity at the wall critically affects wall stresses and flow profiles, and particularly the total flowrate. In this work we show, through numerical simulations and experiments, that the global slip phenomenon at a wall has peculiar features which deviate significantly from simple sliding behavior. At first we present experimental data for the vertical chute flow which highlight that wall slip depends on many operating and system variables such as flow rate, material properties, wall properties. Secondly, we resume a large campaign of numerical data performed in 2D with polygonal particles, and try to analyse the effect of material properties, contact parameters, operating variables, different flow configurations, on the slip phenomenon. The numerical campaign allowed to identify the main parameters affecting the wall slip behavior of a numerical model of granular flow, providing the ingredients for the creation of a framework for the description of wall slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.