Abstract

The Meter model (a four-parameter model) captures shear viscosity–shear stress relationship (S-shaped type) of polymeric non-Newtonian fluids. We devise an analytical solution for radial velocity profile, average velocity, and volumetric flow rate of steady-state laminar flow of non-Newtonian Meter model fluids through a circular geometry. The analytical solution converts to the Hagen–Posseuille equation for the Newtonian fluid case. We also develop the formulations to determine effective viscosity, Reynolds number, and Darcy’s friction factor using measurable parameters as available rheological models do not correctly define these parameters for a given set of flow condition in circular geometry. The analytical solution and formulations are validated against experimental data. The results suggest that the effective Reynolds number and effective friction factor estimated using the proposed formulation help characterize non-Newtonian fluid flow through a circular geometry in laminar and turbulent flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.