Abstract

This paper studies the nature of the effective velocity boundary condition for liquid flow over a plane boundary on which small free-slip islands are randomly distributed. It is found that an effective Navier partial-slip condition for the velocity emerges from a statistical analysis valid for arbitrary fractional area coverage β. As an example, the general theory is applied to the low-β limit and this result is extended heuristically to finite β with a resulting slip length proportional toaβ/(1 − β), whereais a characteristic size of the islands. A specification of the nature of the free-slip islands is not required in the analysis. They could be nano-bubbles, as suggested by recent experiments, or hydrophobic surface patches. The results are also relevant for ultra-hydrophobic surfaces exploiting the so-called ‘lotus effect’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.