Abstract

We propose a theoretical model for studying the effective velocities of polaron spin states in monolayer transition metal dichalcogenides (TMDS) on the substrate. It is found that the effective velocity of polaron shows the splitting with different magnitudes due to the Rashba spin–orbit coupling, which results in the reversed distribution of the effective velocities of polaron spin states. Moreover, the reversed points depend on the truncated wave-vector of optical phonon and can be modulated by the polarity of substrate and the internal distance between monolayer TMDS and substrate. These theoretical results enlighten some simple ways to distinguish and modulate the polaron spin states in two-dimensional heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.