Abstract

ABSTRACTThe modelling of elastic waves in fractured media with an explicit finite‐difference scheme causes instability problems on a staggered grid when the medium possesses high‐contrast discontinuities (strong heterogeneities). For the present study we apply the rotated staggered grid. Using this modified grid it is possible to simulate the propagation of elastic waves in a 2D or 3D medium containing cracks, pores or free surfaces without hard‐coded boundary conditions. Therefore it allows an efficient and precise numerical study of effective velocities in fractured structures. We model the propagation of plane waves through a set of different, randomly cracked media. In these numerical experiments we vary the wavelength of the plane waves, the crack porosity and the crack density. The synthetic results are compared with several static theories that predict the effective P‐ and S‐wave velocities in fractured materials in the long wavelength limit. For randomly distributed and randomly orientated, rectilinear, non‐intersecting, thin, dry cracks, the numerical simulations of velocities of P‐, SV‐ and SH‐waves are in excellent agreement with the results of the modified (or differential) self‐consistent theory. On the other hand for intersecting cracks, the critical crack‐density (porosity) concept must be taken into account. To describe the wave velocities in media with intersecting cracks, we propose introducing the critical crack‐density concept into the modified self‐consistent theory. Numerical simulations show that this new formulation predicts effective elastic properties accurately for such a case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call