Abstract
ABSTRACT Two-body scatterings under the potential of a massive object are very common in astrophysics. If the massive body is far enough away that the two small bodies are in their own gravitational sphere of influence, the gravity of the massive body can be temporarily ignored. However, this requires the scattering process to be fast enough that the small objects do not spend too much time at distances near the surface of the sphere of influence. In this paper, we derive the validation criteria for effective two-body scattering and establish a simple analytical solution for this process, which we verify through numerical scattering experiments. We use this solution to study star–black hole scatterings in the discs of active galactic nuclei and planet–planet scatterings in planetary systems, and calculate their one-dimensional cross-section analytically. Our solution will be valuable in reducing computational time when treating two-body scatterings under the potential of a much more massive third body, provided that the problem settings are in the valid parameter space region identified by our study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.