Abstract

Production of olive oil results in the generation of high amounts of heavy polluted effluents characterized by extremely variable contaminants degree, leading to sensible complexity in treatment. In this work, batch membrane processes in series comprising ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are used to purify the effluents exiting both the two-phase and tree-phase extraction processes to a grade compatible to the discharge in municipal sewer systems in Spain and Italy. However, one main problem in applying this technology to wastewater management issues is given by membrane fouling. In the last years, the threshold flux theory was introduced as a key tool to understand fouling problems, and threshold flux measurement can give valuable information regarding optimal membrane process design and operation. In the present manuscript, mathematical approach of threshold flux conditions for membranes operation is addressed, also implementing proper pretreatment processes such as pH-T flocculation and UV/TiO2 photocatalysis with ferromagnetic-core nanoparticles in order to reduce membranes fouling. Both influence the organic matter content as well as the particle size distribution of the solutes surviving in the wastewater stream, leading, when properly applied, to reduced fouling, higher rejection and recovery values, thus enhancing the economic feasibility of the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.