Abstract

Single-domain antibody fragments (sdAbs) are attractive for targeted α-particle therapy, particularly with 211At, because of their rapid accumulation in tumor and clearance from normal tissues. Here, we evaluate the therapeutic potential of this strategy with 5F7 and VHH_1028-2 sdAbs that bind with high affinity to domain IV of human epidermal growth factor receptor type 2 (HER2). Methods: The HER2-specific sdAbs and HER2-irrelevant VHH_2001 were labeled using N-succinimidyl-3-211At-astato-5-guanidinomethyl benzoate (iso-211At-SAGMB). The cytotoxicity of iso- 211At-SAGMB-5F7 and iso- 211At-SAGMB-VHH_2001 were compared on HER2-expressing BT474 breast carcinoma cells. Three experiments in mice with subcutaneous BT474 xenografts were performed to evaluate the therapeutic effectiveness of single doses of iso- 211At-SAGMB-5F7 (0.7-3.0 MBq), iso- 211At-SAGMB-VHH_1028 (1.0-3.0 MBq), and iso- 211At-SAGMB-VHH_1028 and iso- 211At-SAGMB-VHH_2001 (∼1.0 MBq). Results: Clonogenic survival of BT474 cells was reduced after exposure to iso- 211At-SAGMB-5F7 (D0 = 1.313 kBq/mL) whereas iso- 211At-SAGMB-VHH_2001 was ineffective. Dose-dependent tumor growth inhibition was observed with 211At-labeled HER2-specific 5F7 and VHH_1028 but not with HER2-irrelevant VHH_2001. At the 3.0-MBq dose, complete tumor regression was seen in 3 of 4 mice treated with iso- 211At-SAGMB-5F7 and 8 of 11 mice treated with iso- 211At-SAGMB-VHH_1028; prolongation in median survival was 495% and 414%, respectively. Conclusion: Combining rapidly internalizing, high-affinity HER2-targeted sdAbs with the iso- 211At-SAGMB residualizing prosthetic agent is a promising strategy for targeted α-particle therapy of HER2-expressing cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call