Abstract
Male BXSB mice spontaneously develop autoimmune disease with features similar to systemic lupus erythematosus. To determine whether this autoimmune disease can be treated as well as prevented by bone-marrow transplantation (BMT) and, at the same time, whether the immunity functions of lethally irradiated recipients can be reconstituted fully, male BXSB mice were engrafted with mixed T cell-depleted marrow (TCDM) both from fully allogeneic autoimmune-resistant BALB/c mice and from syngeneic autoimmune-prone BXSB mice, after the onset of autoimmune disease in the recipient mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) established stable mixed chimerism, prolonged the median life span, and arrested development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also reduced the formation of anti-DNA antibodies that are observed typically in male mice of this strain. Furthermore, mixed BMT reconstituted the primary antibody production in BXSB recipients impressively. These findings indicate that transplantation of allogeneic autoimmune-resistant TCDM plus syngeneic autoimmune-prone TCDM into lethally irradiated BXSB mice can be used to treat autoimmune and renal disease in this strain of mice. In addition, this dual bone-marrow transplantation reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total body irradiation. This report describes an effective treatment of progressive renal disease and autoimmunity by establishing a stable mixed chimerism of TCDM transplantation from allogeneic autoimmune-resistant BALB/c mice plus syngeneic autoimmune-prone BXSB mice into BXSB mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.