Abstract

Effective tight-binding models have been introduced to describe vertical electronic excitations in branched conjugated molecules. The excited-state electronic structure is characterized by quantum particles (excitons) that reside on an irregular lattice (graph) that reflects the molecular structure. The methodology allows for the exciton spectra and energy-dependent exciton scattering matrices to be described in terms of a small number of lattice parameters which can be obtained from quantum-chemical computations using the exciton scattering approach as a tool. We illustrate the tight-binding model approach using the time-dependent Hartree-Fock computations in phenylacetylene oligomers. The on-site energies and hopping constants have been identified from the exciton dispersion and scattering matrices. In particular, resonant, as well as bound states, are reproduced for a symmetric quadruple branching center. The capability of the tight-binding model approach to describe the exciton-phonon coupling and energetic disorder in large branched conjugated molecules is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.