Abstract

We start from a six-band model describing the transition-metal t2g orbitals of half-metallic double perovskite systems, such as Sr2FeMoO6, in which only one of the transition metal ions (Fe) contains important intratomic repulsion Ufe. By eliminating the Mo orbitals using a low-energy reduction similar to that used in the cuprates, we construct a Hamiltonian which contains only effective t2g Fe orbitals. This allows to treat exactly Ufe, and most of the Fe-Mo hopping. As an application, we treat the effective Hamiltonian in the slave-boson mean-field approximation and calculate the position of the metal-insulator transition and other quantities as a function of pressure or on-site energy difference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.