Abstract

The thermal conductivity represents a key parameter for the consideration of temperature control and thermal inhomogeneities in batteries. A high‐effective thermal conductivity will entail lower temperature gradients and thus a more homogeneous temperature distribution, which is considered beneficial for a longer lifetime of battery cells. Herein, the impact of the microstructure within the porous electrode coating obtained by different compression rates and its thermal contact to the current collector is investigated as both factors significantly determine the overall conduction through the electrode. The effective thermal conductivity of two graphite anodes and two lithium nickel manganese cobalt oxide cathodes is evaluated at different compression rates. It is found that the thermal conductivity does not have a monotone dependence on the porosity with changing compression rates. The results show a strong correlation with the adhesion strength, thus a significant impact of the thermal contact resistance between the coating and current collector is assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.