Abstract

Modeling heat transfer and fluid flow in materials with complicated micro-structures is a major challenge to numerical methods due to their multiscale and multiphysics nature. A relatively novel numerical technique—the meshless smoothed particle hydrodynamics (SPH) method has the potential of making a significant contribution to this research field. In the present SPH modeling effort, a 2D modeling system is devised for the prediction of the effective thermal conductivity in heterogeneous materials containing two or three different components. The microscopic component configuration inside the materials is constructed in the SPH methodology by randomly assigning particles as a certain component to meet the required macroscopic composition. For heterogeneous two-component materials, the effective thermal conductivity predicted by the modified effective medium theory model with the so-called “flexible” factor f equal to 4.5 agrees well with the SPH data. On the basis of a simple “step-process” concept, the effective thermal conductivity of a heterogeneous multi-component material can be derived from the corresponding “degenerate” materials which consist of fewer components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.